\begin{tabbing} $\forall$\=$i$, $x$:Id, $k$:Knd, ${\it ds}$:$x$:Id fp$\rightarrow$ Type, ${\it da}$:$a$:Knd fp$\rightarrow$ Type,\+ \\[0ex]$f$:(State(${\it ds}$)$\rightarrow$Valtype(${\it da}$;$k$)$\rightarrow$${\it ds}$($x$)?Void). \-\\[0ex]@$i$: with declarations \\[0ex]ds:${\it ds}$ \\[0ex]da:${\it da}$ \\[0ex] \\[0ex]effect of $k$(v) is $x$ := $f$ s v \\[0ex]realizes ${\it es}$. \\[0ex]($\forall$$x$:Id. vartype($i$;$x$) $\subseteq\rho$ ${\it ds}$($x$)?Top) \\[0ex]\& ($\forall$$e$:E. loc($e$) $=$ $i$ $\in$ Id $\Rightarrow$ valtype($e$) $\subseteq\rho$ Valtype(${\it da}$;kind($e$))) \\[0ex]\& ((isrcv($k$) $\Rightarrow$ destination(lnk($k$)) $=$ $i$) $\Rightarrow$ kindtype($i$;$k$) $\subseteq\rho$ Valtype(${\it da}$;$k$)) \\[0ex]\& (\=$\forall$$e$:E.\+ \\[0ex]loc($e$) $=$ $i$ $\in$ Id \\[0ex]$\Rightarrow$ kind($e$) $=$ $k$ $\in$ Knd \\[0ex]$\Rightarrow$ ($x$ after $e$) $=$ $f$((state when $e$),val($e$)) $\in$ ${\it ds}$($x$)?Top) \- \end{tabbing}